Temperature and Heat
Temperature
Thermal Expansion
The $1^{\text {st }}$ Law of Thermodynamics
Heat Transfer
Specific Heat Capacity
Phase Transition
Heat Engines and the $2^{\text {nd }}$ Law of Thermodynamics

Temperature and Energy (Heat)

Temperature and Heat are used interchangeably however they mean 2 different things.
Heat is energy and it is an additive quantity. The units of Energy is Joules.
The combined Temperature of two bodies is not additive, it is an equilibrium state.

The units of Temperature are Celsius, Fahrenheit and Kelvin.

Heat is calculated.
Temperature is measured.
Principle: The Kelvin scale temperature of matter is proportional to the average kinetic energy of the constituent particles.

Temperature - heat

a) Given the thermometers pictures, plot these scales into a sheet
b) The C graph take any 2 points to make a plot (i.e to plot 30C, go right 3 boxes and up 3 box, Label the first graph C
c) The F graph take any 2 point to make a plot (i.e. plot 212 F , go right 10 boxes and go up 21 boxes), Label $2^{\text {nd }}$ Graph F
d) On each graph what would be the temperature (units)

Temperature and Energy

Temperature is dependent on the KE of atoms in Kelvin Scale.
A around 2 K , some conductors become SUPERCONDUCTORS, no more resistance VIR.

An illustration of what happens at Zero K

400 K

High KE

200 K

Lower $K E$

0 K

Zero $K E$

Units: Temp: C, F, K, Heat: Joules.

Thermal Expansion

In many instances as temperature increases, pressure increase (reminder: pressure = F/A).
Solid Linear Expansion: depends on 1) Length, 2) ΔT, 3) Material We call alpha α the coefficient of linear expansion (it is the slope!)

$$
\Delta l=\alpha * l_{0} * \Delta T
$$

What are the units of $\alpha, \Delta l, \Delta T$?

Solid	$\boldsymbol{\alpha}\left(\times \mathbf{1 0}^{-6} /{ }^{\circ} \mathbf{C}\right)$
Aluminum	25
Brass or bronze	19
Brick	9
Copper	17
Glass (plate)	9
Glass (Pyrex)	3
Ice	51
Iron or steel	12
Lead	29
Quartz (fused)	0.4
Silver	19

Thermal Expansion

Bimetallic Strips used everyday and everywhere.
Very reliable technology, very sensitive and much easier to read than standing thermometers.

$$
\Delta l=\alpha l \Delta T
$$

Liquids

Liquid thermometers (Mercury, Ethanol, Isopropanol)
We call alpha α the coefficient of linear expansion (it is the slope!)
Convert from $\mathrm{C} \rightarrow$ to F

$$
{ }^{\circ} F=\left(\frac{9}{5} *{ }^{\circ} C\right)+32
$$

Convert from $\mathrm{F} \rightarrow$ to C

Convert from $\mathrm{C} \rightarrow$ to K

$$
{ }^{\circ} \mathrm{C}=\left({ }^{\circ} F-32\right) * \frac{5}{9}
$$

${ }^{\circ} \mathrm{K}={ }^{\circ} \mathrm{C}+273.15$

Special case to convert from F to Kelvin 2 steps,

Convert from $\mathrm{F} \rightarrow$ to C , then C to K

$$
{ }^{\circ} K=\left(\left({ }^{\circ} F-32\right) * \frac{5}{9}\right)+273.15
$$

Common Temperatures to memorize, they will be in the exam.

${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	
-40	-40	Where Celsius equals Fahrenheit (good to double check formulas)
0	32	The freezing point of water. (Water, Ice, Vapor Co-exist)
21	70	A typical room temperature.
35	95	Hypothermia Starts
37	98.6	Body temperature.
38	99	Fever Starts, depends oral, rectal or Armpit
100	212	Boiling point of water at sea level.

Liquid - H2O weird behavior

Try it at home, fill up a bottle of water to the top, cover it a day later check it out. Try a can of coke -
Extreme care must be take handling medical solutions in freezers - thermal expansion is real.

Above 4C (39F) water expands when heated Between OC (32F) - 4C (39F) water is weird

It expands when Cooled
It contracts when Heated
i.e. water at 2 C occupies more volume than at 3C
Think about skating on a lake, Ice on top water on the bottom

Gases: Ideal Gas Laws (Jacques Charles 1746)

The volume expansion of gases is larger than Solids or Liquids. The amount of expansion does not depend on the gas.
Law: Ideal Gas Law In a gas with a density that's low enough that interactions between molecules can be ignored the pressure, volume, and temperature of the gas are related using the equation shown.
The constant depends on the quantity of gas present but not its specific type.
Typically we use
$p V=T$ or $\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}=$ Constatnt
Often in refrigeration system, the volume is fixed, as such an increase in pressure produces an increase in temperature. The tires of your car during summer are subject to an increase in temperature, pressure and limited volume - you better check your tires pressure.
For this law to work, the units of Temperature must be in Kelvin.

A volume of $810^{-3} \mathrm{~m}^{3}$ of an ideal gas enclosed in a thin, elastic membrane in a room at sea level where the air temperature is 18 C . If the temperature of the room is increased by 10C, what is the new volume of the gas?

An amount of an ideal gas at 16 C and a pressure of $1.7510^{-5} \mathrm{~Pa}$ occupies a volume of $2.75 \mathrm{~m}^{3}$. If the volume is increased to $4.20 \mathrm{~m}^{3}$ and the temperature is raised to 26.4 C , what will be the new pressure of the gas?

2 ways to increase the temperature of matter.

1. Exposing to / near something hotter (Stove, Heater, Sun, Drier, Fire...)
2. By doing work on it (Friction, Gas Compression, stirring a pot...)

Temp Increase = Gain in Kinetic Energy. Lets spice it up, be active and hot! Temp Decrease = Loss in Kinetic Energy.
Q is the symbol for heat and units Joules (Heat = Energy)

First Law of Thermodynamics

For Solids and Liquids both are important, Kinetic and Potential Energy.
Definition: Heat the form of energy that is transferred between 2 substances because they have different temperatures.

Definition: Internal Energy U The sum of the KEs \& PEs of the atoms in a substance.

Units for Heat: J (Joules), Calories (cardio), BTUs appliance, N-m

First Law of Thermodynamics

Law: The First Law of Thermodynamics, The change in internal energy of a substance equals the work done on it plus the heat transferred to it.
We introduce U Internal Energy (KE+PE) / U in Joules
$\Delta U=W$ ork $+Q$ See Picture:

- Work could be (+) or (-) / Heat could be (+) or (-) Work (+) if done "ON" a substance Work (-) if "substance does" the work Heat $\mathrm{Q}(+)$ when heat flows "Into" substance (Temp Increase)
Heat $Q(-)$ when heat flows "Out of" substance (Temp Decrease)

Work done on the gas

Work done by the gas

Define your system or follow instructions. How do we quantize Work and Heat?

First Law of Thermodynamics
Internal Energy U = (KE+PE).
Solids \& Liquids: atoms have both (KE+PE)

```
\DeltaU = Work +Q
```


Gases atoms have only (KE)

Work: discussed in prior chapter, i.e. Force x Distance along force. Heat: Q , discussed later, calculated by temp difference increase or decrease.

$$
Q=C * m * \Delta T
$$

Work done "ON" or Heat transferred "TO"

Work \& Heat are energy in transition, whereas KE \& PE are stored Energy First Law of Thermodynamics is a Law of Conservation

$\Delta U=\Delta(K E+P E)$

Heat Transfer - Temperature Change

Heat Transfer occurs whenever there is a temperature change. As soon as there is a temperature difference there will be a temperature potential (kind of force). Heat Transfer Modes (There is a lot of overlap between modes)

Definitions:

- Conduction: The transfer of heat of objects in direct contact
- Convection: The transfer of heat by buoyant mixing in fluids fluid
- Radiation: The transfer of heat by way electromagnetic waves

Two objects @ the same temp are in thermal equilibrium - No Heat Transfer Whenever there is two objects at 2 different there will be Heat Transfer

Conduction:

- Thermal Conductors (i.e. copper, steel, diamond - very compact dense)
- Thermal Insulators (i.e. Wool, Styrofoam, fiber glass - lots of space and air, special case Vacuum - no air just emptiness, Vacuum no atomic interaction so no KE \& no PE)
Radiation: Can be transferred even through Vacuum

Radiation in the medical field is it safe?
They use the non-ionizing radiation - Go Figure!

Heat Transfer

I CONCEPT MAP 5.2

Heat Transfer - Specific Heat Capacity

Curiosity Kills the cat!
How much energy it takes increase the temp by ...?
Is it easier to cool a mosquito or an elephant?
Mostly common depends on the temperature difference, the quantity mass, and the substance material.
For instance it takes more energy to increase the temperature of water by 1 degree than say copper or mercury - this number is called specific heat capacity noted as capital C.

Remember Heat KE \& PE.
1 calories is the energy required to increase 1 kg of $\mathrm{H}_{2} \mathrm{O}$ by 1 C .
1 calorie $=4.184 \mathrm{~J}$
Note: C for $\mathrm{H}_{2} \mathrm{O}$ is high (it is great at absorbing \& releasing heat -

$Q=C$ * 0 * $\triangle T$	
Substance	
Solids	
Aluminum	890
Concrete	670
Copper	390
Ice	2,000
Iron and steel	460
Lead	130
Silver	230
Liquids	
Gasoline	2,100
Mercury	140
Seawater	3,900
Water (pure)	4,180

Could Q be negative?

A bottle containing 3 kg of water at a temperature of 20 C is placed in a refrigerator where the temperature is kept at 3C.
How much heat is transferred from the water to cool it to $3 C$?

Compute the amount of heat needed to raise the temperature of 1 kg of water from its freezing point to its boiling point.

A 1,200 kg car going $25 \mathrm{~m} / \mathrm{s}$ is brought to a stop using its brakes. Approximately 20 kg of iron in the brakes \& wheels absorbs the heat produced by the friction.
(a) What was the car's original kinetic energy?
(b) After the car has stopped, what is the change in temperature of the brakes $\&$ wheels?

Water flowing over the Lower Falls in Yellowstone National Park drops 94 m. If all of the water's energy goes to heat it, what is its temperature increase?

A 0.02 kg lead bullet traveling $200 \mathrm{~m} / \mathrm{s}$ strikes an armor plate and comes to a stop. If all of the bullet's energy is converted to heat, what is its temperature change?

Phase Transition - Change of State

What are the states of matter we studied in chapter 4?
What causes matter to change state? - Pull up your notes
Lets start with some experiments and observations - water.
Note: from left to right and from bottom to up -Ice to (mix water ice) -100 to $0 \mathrm{CQ}=2.1 \mathrm{~kJ} / \mathrm{kg}$ -Melting ice and water OC to $0 \mathrm{C} 334 \mathrm{~kJ} / \mathrm{kg}$ -Liquid water OC to $100 \mathrm{C} 4.2 \mathrm{~kJ} / \mathrm{kg}$ -Boiling water 100 to $100 \mathrm{C} 2265 \mathrm{~kJ} / \mathrm{kg}$ -Steam 100 to $200 \mathrm{C} 2.1 \mathrm{~kJ} / \mathrm{kg}$

- Phase transfer takes much more energy than temperature increase - called Latent Heat.
- During phase transfer no temperature increase -called Sensible Heat

Phase Transition - Change of State

Heat	Temperature Change	Phase Change	KE	PE
Sensible Heat	YES	NO	YES	NO
Latent Heat	NO	YES	NO	YES

Sublimation, Solid to Gas will not be discussed in this chapter Today the temperature is xx and humidity is xx so how did water vaporized? It is the average Kinetic Energy - average is the sum of very high \& very low KE. Very high KE water molecules escape and float in the air.
Definitions: Humidity is the mass of water vapor in the air per unit volume - the density of water vapor in the air - Mass/ Volume = Density!
Humidity ranges from $0.001 \mathrm{~kg} / \mathrm{m}^{3}$ (cold day in a dry climate) to $0.03 \mathrm{~kg} / \mathrm{m}^{3}$ (hot, humid day). These densities are much less than the normal density of the air, 1.29 $\mathrm{kg} / \mathrm{m}^{3}$. Humidity is a small component of the air-less than 5%.
At any given temperature, there is a maximum possible humidity called Saturation Density. Once that maximum is reached, inter-molecular forces overcome KE and water molecule bound again and form droplets

Definitions: Relative Humidity is the humidity expressed as a percentage of saturation density

$$
\text { Relative Humidity }=\frac{\text { humidity }}{\text { saturation density }} * 100 \%
$$

62% RH means 62% of the max amount of vapor is present or we are 38% near saturation.
Why dew forms on plant during morning (after night)? What happens at night? When vapor is cooled and humidity stays constant, condensation occurs. The temperature at which this occurs is called the dew point.

" Temperature is the basis of our sense of hot and cold. Physically, the temperature of a substance is proportional to the average kinetic energy of its atoms and molecules.
" Three different temperature scales are in common use today-the Fahrenheit, Celsius, and Kelvin scales. The Kelvin temperature scale uses the lowest possible temperature, absolute zero, as its zero point.
" In most cases, matter expands when its temperature is raised. The amount of expansion depends on the substance and the temperature change. This property is exploited in mercury and alcohol thermometers and in bimetallic strips.
" The internal energy of a substance is the total potential and kinetic energies of its atoms and molecules. It can be increased by doing work on the substance and by transferring heat to it.
" The first law of thermodynamics states that the change in internal energy of a substance equals the work done on it plus the heat transferred to it.
" Heat can be transferred from one place to another in three ways. Conduction is the transfer of heat via contact between atoms or molecules. Convection is the transfer of heat via buoyant mixing in a fluid. Radiation is the transfer of heat via electromagnetic radiation. In some situations, all three processes occur at the same time.
" Except during phase transitions, the temperature of matter increases whenever its internal energy increases. The specific heat capacity is a characteristic of each substance that relates the mass and temperature increase to the heat transferred.
" During phase transitions, the potential energies of the atoms and molecules change while their average kinetic energy remains constant. So the internal energy increases while the temperature stays the same.
" Evaporation is a liquid-to-gas phase transition that occurs below the boiling temperature. It is responsible for the water vapor present in the air. Humidity and relative humidity are two measures of the water-vapor content in air.
" Heat engines are devices that use heat from a hot source to do work. They release heat at a cooler temperature in the process. The maximum efficiency of a theoretically "perfect" heat engine is determined by the temperatures of the hot and cold reservoirs.
" Heat movers use an energy input to remove heat from a cool substance and transfer it to a warmer substance.
" Entropy is a measure of the disorder in a system. Heat engines do not "consume" energy, but they do increase entropy, thus reducing the quality or ease of the use of the energy. Increases in the entropy (disorder) of the universe result from all natural processes.

Equation

$\Delta l=\alpha l \Delta T$
$p V=$ (constant) T
$\Delta U=$ work $+Q$
$Q=C m \Delta T$
relative humidity $=\frac{\text { humidity }}{\text { saturation density }} \times 100 \%$

Comments

Thermal expansion of a rod
Pressure, volume, and temperature of a fixed amount of a gas (ideal gas law)

First law of thermodynamics
Heat needed to raise the temperature of a substance by ΔT

Definition of relative humidity

