Study of Motion

- What is Motion?
-How do we quantize it?
- Space
- Time
- Matter
- All physical quantities involve measurement of Space, Time, Matter

Space

- For all practical purposes Distance is the space between two points in 1 dimension
- Eventually it will be more complex in 3D.
- Common Terms Length, Width, Height, Diameter... (ft, in, mi, m, micron etc...)

Table 1.1 Some Representative Sizes and Distances

Size/Distance	Metric	English
Size of a nucleus	$1 \times 10^{-14} \mathrm{~m}$	$4 \times 10^{-15} \mathrm{in}$.
Size of an atom	$1 \times 10^{-11} \mathrm{~m}$	$4 \times 10^{\mathbf{~}} \mathrm{in}$.
Size of a red blood cell	$8 \times 10^{-6} \mathrm{~m}$	$3 \times 10^{-4} \mathrm{in}$.
Typical height of a person	1.75 m	5.75 ft
Tallest building	830 m	$2,722 \mathrm{ft}$
Diameter of Earth	$1.27 \times 10^{7} \mathrm{~m}$	7,920 miles
Earth-Sun distance	$1.5 \times 10^{11} \mathrm{~m}$	$9.3 \times 10^{\mathbf{7}}$ miles
Size of our galaxy	$9 \times 10^{\mathbf{2 4}} \mathrm{m}$	6×10^{17} miles

soode

Quantizing thing we need in real life
1D = Length / 2D = Surface Area / 3D = Volume Must know the difference between surface and volume. And how to calculate the surface and volume of common objects.
Common Volumes:

- Box $=L \times W \times H$
- Cylinder $=\pi \mathrm{R}^{2} \times \mathrm{H}$
- Sphere $=4 / 3 \pi R^{3}$

What is the surface are of Stethoscope to be effective?

See and practice with cheat-sheet for more information
A.

WATCHMAN $2.5^{\text {TM }}$

B.

WATCHMAN FLX ${ }^{\text {TM }}$

		SI	IP
1D	Length	m (meter)	ft (foot)
2D	Area	m^{2} (square meter)	ft^{2} (square ft)
3D	Volume	m^{3} (cubic meter)	ft^{3} (cubic ft)

Time - Quantization

What is Time? How do we quantize time?

Time is based on the measure of periodic processes that repeat over and over and over... kind of Tick Tock, Tick Tock

Year (S)	31556926 Seconds
Day (S)	24 Hours
Hour (S)	60 Minutes
Minute (S)	60 Seconds
Second (S)	0.000277778 Hr
Femto- seconds	one-quadrillionth of a second or 10^{-15} of a second or $1 / 1000000000000000$ of a second

Time

... kind of Tick Tock, Tick Tock

Period: The time for one complete cycle of a process that repeats T (s)

$$
T=\frac{1}{f}
$$

Frequency: The number of cycles of periodic process that occur per unit of time $f(1 / \mathrm{s})$ or $\left(\mathrm{s}^{-1}\right)$ or hertz (Hz)

$$
f=\frac{1}{T}
$$

Tachycardia
Cochycardia

A mechanical time stop watch use a balance wheel that rotates back and forth 10 times in 2 seconds.
What is the frequency of the balance wheel?

- Is Mass = Weight? NO

Mass is a measure of how much matter an object contains.
Given a patient of certain mass

- One nurse could push or pull a gurney with a patient (inertia)
- One nurse cannot lift a gurney with a patient (the
 concept of weight froce and gravity)
Inertia implies the concept of how difficult to speed up or slow down an object more in Chapter 2

Weight force is a physical quantity related to mass, but it certainly is NOT mass they are different

Speed

Speed is a key concept to quantize motion. It is the ratio of distance over time.
Speed: Rate of movement. Time rate of change of distance from a reference point. The distance traveled by the time elapsed.

$$
v=s=\frac{d}{t}=\frac{\Delta d}{\Delta t}=\frac{\text { distance }}{\text { elaped time }}=\frac{\text { meter }}{\text { second }}=\frac{\text { miles }}{\text { hours }}
$$

- Speed is a relative concept (need a reference frame).
- Speed and velocity are used interchangeably but mean different things
- Velocity is a vector (Magnitude \& Direction) where the magnitude is a scaler called Speed
- Average Speed is total distance divided by the total time
- Instantaneous Speed is the distance divided by very small time
- When an object is moving at constant speed, then
- the average speed = instantaneous speed
- It is safe to estimate the distance using $d=v * t$

Speed Relativity

What is the speed of the woman?

What is the distance traveled by a hiker after 3hrs and 25 mins knowing that his average speed is 2.7 mph

Using the data find the

1. Average Speed?
2. Instantaneous Speed for the following segments
a) $0-10$
b) $20-30$
c) $50-60$
d) $60-70$
e) $70-80$

What can you say about the speed of the segments a), b), c), d), e)?

Segment (meters)	Time (seconds)
$0-10$	1.85
$10-20$	1.02
$20-30$	0.91
$30-40$	0.87
$40-50$	0.85
$50-60$	0.82
$60-70$	0.82
$70-80$	0.82
$80-90$	0.83
$90-100$	0.90
Total Distance: 100 m	Total Time: 9.69 s

Velocity: Speed in a particular direction (same unit as speed) directed motion.

A critical concept in motion is direction.
Changing the direction of moving object will have an impact on its velocity. To reach a certain destination we need both speed and direction. Maintaining constant speed while changing direction might lead to the wrong destination. Velocity is good application of a Vector (defined by both a scalar and direction) Speed is the scalar component of Velocity
Speed does not become negative when the velocity is negative. A negative velocity means the direction is opposite to a reference point

What is the speed of the woman?

2 Methods for vector manipulation Method 1 Graphical Tail to Head:

- Good for simple problems

Method 2 Vector decomposition:

- Break all vectors into X and Y
- Sum all X and Sum all Y
- Use Pythagoras for resultant magnitude
- Use Trigonometry

(a)

(b)

\square			,	\%										
\cdots	nem		\bigcirc	=										
\% ${ }^{60 \times}$														
*														
,														

Velocity - Vector Manipulation

			F												
		-	-				=								
		-				,									
		rima													
	(19)	(4)			(6)										

A crate is pushed on with a force of 10 N , at angle of 45 degree below horizontal. What are the components of the force?

- Pythagoras $c^{2}=a^{2}+b^{2}$
- $\tan (\theta)=$ Opposite $/$ Adjacent

-								

- Pythagoras $c^{2}=a^{2}+b^{2}$
- $\tan (\theta)=$ Opposite $/$ Adjacent

-									

What would be the NET force at an object knowing that the horizontal force is 4 N and vertical force is 3 N and a force of 10 N at an angle 45 degree below horizontal?

- Pythagoras $c^{2}=a^{2}+b^{2}$
- $\tan (\theta)=$ Opposite $/$ Adjacent

Acceleration

It is the Rate of Change of Velocity over Time:

Note the following terms are similar and used frequently in physis as well as in daily life from cardio vascular, to electronics, to music: Rate, Ratio, per, division

Acceleration: Rate of change of velocity. The change in velocity divided by the time elapsed.

$$
a=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}=\frac{m}{s^{2}}
$$

	$\mathrm{m} / \mathrm{s}^{\mathbf{2}}$	g
Freely falling body on Earth	9.8	1
Free falling body on the Moon	1.6	0.16
Space Shuttle	29	3
Highest Survived by Human	245	46
Spin washing Machine	400	41
Bullet from a rifle	$2,000,000$	200,000

- Remember Acceleration is: the change of velocity over time.
- Objects in motion can change their speed or direction Acceleration
- Acceleration is a VECTOR (noted with an arrow) which means it has a magnitude (scalar) and direction.

Acceleration

A car accelerates from 20 to $25 \mathrm{~m} / \mathrm{s}$ in 4 seconds as it passes a truck. What is its acceleration?

- Free falling objects are very popular examples, these object fall with constant acceleration.
- The g force specifies the force exerted on falling object usually a multiple of $\mathrm{g}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) 3 \mathrm{~g}, 4 \mathrm{~g}$. These quantities are not to be mixed with cell phone generations (3G, 4G, 5G)
- Acceleration is a vector, see resulting vector which represents
 the rate of change of velocity over time

Motion - Velocity - Acceleration

We do it every day!

- Salad Spinner
- Washing Machine
- Amusement Park Spins Ride Lets check the units

$$
a=\frac{v^{2}}{r}\left(\frac{m}{s^{2}}\right)
$$

Lets check the proportionalities

- A higher velocity \rightarrow Higher acceleration
- A higher radius \rightarrow Lower acceleration

Acceleration - Centripetal

So why do we need to slow down on a curve? Image 2 is an excellent example of vector addition, the change in direction of the vector velocity caused a change in acceleration.

Lets calculate the Centripetal Acceleration if $V 1=45 \mathrm{mph}$, and $V 2=20 \mathrm{mph}$ assuming that the approximate radius of the curve is 65 ft 6 in

$$
a=\frac{v^{2}}{r}\left(\frac{m}{s^{2}}\right)
$$

How about we plot a vs V on a graph. Increment V by 2 ie. ($0,10,20,40,80$)

Lets calculate the Centripetal Acceleration when V1 $=45 \mathrm{mph}$, then V2 $=20 \mathrm{mph}$ knowing radius of the curve 65 ft 6 in .

Object at rest (object with zero speed) - the most common type of constant speed but it is special case. Uniform Motion 3 condition: object moves with a

1. non-zero speed $v \neq 0$
2. constant speed $\frac{\Delta v}{\Delta t}=0$
3. fixed direction

When the speed is constant the graph of motion is straight line ($y=a x+b$), where d is the y , the slope a is represented by v, x is represented by t , and $\mathrm{b}=0$

$$
d=v * t
$$

So what happens when velocity changes? All hell breaks lose! Acceleration

A runner is running at a Steady Pace of $7 \mathrm{~m} / \mathrm{s}$.
How does the distance of the runner changes with respect to person sitting on a bench?

Motion Type Explanation

- Lets Examine the graph of distance vs time
- At point A car start to speed
- At point B the car velocity is constant
- At point C the car stopped
- At point D the car is making reverse

Point	Rest v=0?	$\frac{\Delta v}{\Delta t}=0 ?$	Direction?	Straight Line?	Slope
A	No	No	$+(R T L)$	No	Yes
B	No	Yes	$+(R T L)$	Yes	Yes
C	Yes	Yes	N/A	Yes	0
D	No	NO	$-(L T R)$	No	Yes

Strobe photograph of two free falling object. Even though one is much heavier than the other, they have same constant acceleration.
Galileo Pisa Tower Experiment.

Motion Type 2 - Constant Acceleration

What is the velocity of an object with Constant Acceleration
The simplest examples is an object in free fall $a=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}$
We are starting from rest then $t_{i}=0 \& v_{i}=0, a=\frac{\Delta v}{\Delta t}=\frac{v_{f}-0}{t_{f}-0}=\frac{v_{f}}{t_{f}}$
Rearranging $v_{f}=a * t_{f}$
We claim for an object with a constant acceleration, \& starting from rest th general formula is:

```
v = a * t
```

The gravitational acceleration on earth $a=g=9.8\left(\frac{m}{s^{2}}\right)$ then
We can claim for an object in free fall with a constant acceleration, \& starting from rest the formula is:

$$
v=9.8\left(\frac{m}{s^{2}}\right) * t
$$

Using the equation of the last slide, let's make a table, then plot.

The masses of an earring and neckless are 5 grams and 200 grams, respectively. Both fell at the same from the balcony of 12 story apartment.
After 7 seconds, what is their respective speed?

We showed that for constant velocity: $d=v * t$ (eq1)
For a constant velocity again, the average velocity equals the average of the instantons velocities: $\bar{v}=\frac{v_{t}+v_{0}}{2}$ (eq2)
We showed that a free fall object experiences constant acceleration and thus $v=a * t$ (eq3)
Plug eq3 into equ $2 \bar{v}=\frac{a * t+v_{0}}{2}$ (eq4) plug eq1 into eq $4 \frac{d}{t}=\frac{a * t+v_{0}}{2}$ (eq5)
Rearrange $d=\frac{a * t^{2}}{2}+\frac{v_{0} t}{2}$ (eq6)
Started from rest, $v_{0}=0$, thus $d=\frac{a * t^{2}}{2}$ (eq7)
Rearrange and claim for an object with contestant acceleration and starting from rest the general formula is:

$$
d=\frac{a * t^{2}}{2}
$$

Let's make a table and a plot ... for a free falling object i.e. $a=g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Plot of $d(Y)$ as a function of time (x) would be a straight line, with a slope (rise $/$ run) $=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

The masses of an earring and neckless are 5 grams and 200 grams, respectively. Both fell at the same from the balcony of 12 story apartment.
After 7 seconds, how far did they fall from the top?

Constant Velocity Uniform Motion

- $d=v * t$
- Note that the slope is $\mathrm{v}(\mathrm{m} / \mathrm{s})$

Constant Acceleration i.e. falling object starting from rest

- $v=a * t$
- Note the slope is a $(\mathrm{m} / \mathrm{s} 2)$
- $d=\frac{a * t^{2}}{2}$
- Note it is not linear relationship

Things to remember

Helpful Formulas - Easier to understand than to memorize

Motion	Equation	
Object at Rest	$d=$ constant	Distance is constant (fixed value)
	$v=0$	Velocity zero
	$a=0$	Acceleration zero
Uniform Motion	$d=v t$	Distance is proportional to time
	$v=$ constant	Velocity is constant (fixed value)
	$a=0$	Acceleration zero
Uniform Acceleration	$d=0.5 a t^{2}$	Distance Proportional to time squared
(from rest)	$v=a t$	Velocity Proportional to time
	$a=$ constant	Acceleration is constant (fixed value)

Distance is always measure from object initial location.

