Time	Length	Length		Mass	Enrgy/Power	Speed
1min =60 s	1 km = 1000 m	1 ft = 12 in	1m = 100cm	1 kg = 1000g	1Cal = 4.184J	1mph =0.44704m/s
1 hr =3600s	1 m = 3.281 ft	1 yard = 3 ft	1m =1000mm	1 slug = 14.58 kg	1 HP = 735.49 Watt	1mph =1.609 km/hr
	1 mi = 1.609 km	1 in = 2.54 cm	1μm = 10 ⁻⁶ m	1 kg = 2.205lb weight	1 BTU = 0.293 Watt	
			1nm = 10 ⁻⁹ m		$g = 9.8 \text{ m/s}^2$	

Motion	Equation	Physical	
Object at	d = Constant	Dist is constant	
Rest	v = 0	Velocity zero	
	a = 0	Acceleration zero	
Uniform	d = v t	Dist is ~ to time	
Motion	v = Constant	Velocity is constant	
	a = 0	Acceleration zero	
Uniform	$d = 0.5 a t^2$	Dist ~ time squared	
Acceleration (from rest)	v = a t	Velocity ~ to time	
	a = Constant Acceleration is constant		
Distance is always measure from object initial location.			

Note	Formula	Note	Formula
Per to freq	T = 1/f	Dist frm start / vel is cst	d = v t
Vel m/s	$v = \Delta d/\Delta t$	Dist frm rest & a is cst	$d = 0.5 a t^2$
Acc m/s ²	$a = \Delta v / \Delta t$	Vel frm rest & a is cst	v = a t
New 2 Law	F = m a	Centripetal acc	$a = v^2/r$
Linr Mom	L.M = m v	Kinetic Enrg	$KE = 0.5 mv^2$
Work	$W = F d \rightarrow$	Pot Enrg	PE = m g h
Power	$P = \Delta W/\Delta t$	Pot Enrg Spring	$PE = 0.5 k d^2$
		Hook Law	F = -k d

Pressure	$P = F_{\perp}/A$	Thermal Expansion	$\Delta L = \alpha L_i \Delta T$
Density Mass	D = m/V	Heat	$Q = C m \Delta T$
Density Weight	$D_w = W/V$	1st Law of Thermo	$\Delta U = Work + Q$
Pressure Mass Density	P = D g h	Internal Energy	$\Delta U = KE + PE$
Pressure Weight Density	$P = D_w h$	C to F	$^{\circ}F = 1.8^{\circ}C + 32$
Bernoulli	$V_i A_i = V_f A_f$	F to C	$^{\circ}\text{C} = (^{\circ}\text{F} - 32)/1.8$
Archimede's	$F_b = W_{displaced\ fluid}$	C to K	$K = {}^{\circ}C + 273.15$
Hydraulics	$\frac{F_i}{A_i} = \frac{F_o}{A_o}$	Ideal Gas Law	$\frac{P_i V_i}{T_i} = \frac{P_f V_f}{T_f}$

$v = f \lambda$
$v = 20.1 \sqrt{T}$ (air)
$v = 58.5 \ \sqrt{T} \ (\text{He})$
$v = 15.7 \sqrt{T} \text{ (CO2)}$

$A = \pi R^2$	Surf Area of a circle
V = L * W * H	Vol Box
$V = \pi R^2 * H$	Vol Cylinder
$V = 4/3 \pi R^3$	Vol Sphere

Conservation Laws (Mass, Linear Momentum, Energy)

1st order Polynomial Straight Line

$$y = a x + b$$

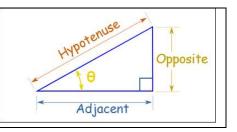
a = slope (rise / run) b = Y-Intercept

2nd order Polynomial

$$y = a x^2 + hx + c$$

$$y = a x^2 + bx + c$$
 Solutions: $x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

$$x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$


Pythagoras: $hyp^2 = opp^2 + adj^2$

Trigonometry:

 $sin(\theta) = Opposite / Hypothenuse$

 $cos(\theta) = Adjacent / Hypothenuse$

 $tan(\theta) = Opposite / Adjacent$

Revision: 4/25/2024

Common Substances Densities

Substance	Density (Kg/m³)	Substance	Density (Kg/m³)	Substance	Density (Kg/m³)
Wood	560	Copper	8930	Mercury	13600
Ebony	1200	Silver	10500	Hydrogen	0.09
Concrete	2500	Lead	11340	Helium	0.18
Aluminum	2700	Gold	19300	Nitrogen	1.25
Diamond	3400	Gasoline	680	Air	1.29
Iron	7860	Alcohol	791	Oxygen	1.43
Brass	8500	Water	1000	Radon	10

C: Specific Heat Capacity

Substance	J/(kgC)	Substance	J/(kgC)
Aluminum	890	Gasoline	2100
Concrete	670	Mercury	140
Copper	390	Seawater	3900
Ice	2000	Water	4180
Iron/Steel	460		
Lead	130		
Silver	230		

lpha: Thermal Expansion Coefficient

Substance	α (10 ⁻⁶ /C)	Substance	α (10- ⁶ /C)
Aluminum	25	Ice	51
Brass/Bronze	19	Iron/Steel	12
Brick	9	Lead	29
Copper	17	Quartz	0.4
Glass	9	Silver	19

Revision: 4/25/2024