Commercial Refrigeration Temperature & Defrost Control and Optimization

> Joe Dudley Regional Sales Manager KE2 Therm Solutions, Inc.

Commercial Refrigeration: The unmet energy challenge

Traditional Temperature Controls

- Pressure Controls
 - Provides Indirect Temperature Control

- Thermostat
 - Return/Discharge Air Temp
 - Evaporator Coil Temp
 - Product Temp

Advanced Temperature Control Multiplex Rack Systems

• Evaporator Pressure Regulator (EPR)

- EPR = Steady Suction P = Steady Air Temp
- Good for stable load conditions

- Electronic Suction Regulator
 - Controlled by microprocessor controls
 - Flexible control (pressure or temp)
 - Responds to varying load conditions for improved temperature control

Advanced Temperature Control Single Compressor Systems

• Hot Gas Bypass

- Can Provide Excellent Temperature Control
- Comes at an Energy Penalty

Advanced Temperature Control Single Compressor Systems

- Utilize microprocessor controls to improve overall system performance
- Reduced Room Temp Differential Between Cut-In & Cut-Out
- Compressor Short Cycle Protection (Minimum Runtime & Off-time)
- Evaporator Fan Management

• Variable Speed Evaporator Fans

- Should be part of overall system design
- Likely requires other variable capacity components (EEVs, Variable Speed Compressor, etc.)
- Can be cost prohibitive for smaller applications

• Two Speed Evaporator Fans

- Provides energy savings during refrigeration off-cycle
- Typically requires specific motor design
- Off-Cycle Fan Management

Off-Cycle Fan Management Provides Improved Temp Control & Energy Savings

Free Cooling – Latent Energy Recovery

 Proper fan control during operation provides "free cooling" by sublimating frost to chill room

~ 1200 BTUs per Pound

Factors Affecting Frost Buildup

- Air Temp
- Humidity
- Coil Temp
 - Including variations due to refrigerant flow
- Fin Spacing
- Air movement (high velocity vs. low velocity)

Light Frost Accumulation Improves Heat Transfer of the Coil

Common Methods of Defrost

- Air Defrost (Off-Time)
- Hot Gas Defrost
- Electric Defrost

Air Defrost Techniques (Space Temps ≈ 36°F & Above)

Natural Off-Time

- Requires oversized refrigeration system
- Space Temperature control always active
- $\circ~$ No guarantee the coil is defrosted

Pressure/Temperature constant cut-in/cut-out

- o Initiates off-cycle/defrosts in response to drop in suction temp/pressure
- $\circ~$ Provides indirect space temperature control
- $\circ~$ Does provide feedback regarding defrost effectiveness
- $\circ~$ Can be difficult to dial-in
- System issues & load variations can "fool" the controls

Forced Defrost

- Independent of Temperature Control
- Fixed Time or Temperature Terminated

Hot Gas Defrost

- Typically Fastest Means of Defrost
- Melts Frost from Inside-Out
- Heat is Provided by Refrigeration System
- Higher Up Front Cost for Added Piping & Controls

Hot Gas Defrost Techniques

Reverse Flow

- $\circ~$ Typically on Rack Systems
- Hot Gas is directed from
 Compressor Discharge or
 Liquid Receiver to Outlet of
 Evaporator
- Gas flows backwards through Evap and condensed liquid is directed to liquid line/header

Hot Gas Defrost Techniques

• Three Pipe

- $\circ~$ Dedicated Hot Gas line to the evaporator inlet
- Must have a means of dealing with condensed liquid exiting the evap during defrost

• Reverse Cycle

- Single Compressor System
- Reversing Valve Shifts Flow of Refrigerant Condenser↔Evaporator

Electric Defrost

- Simple to Operate & Maintain
- Typically longer to Defrost than Hot Gas since heat has to travel from heaters to frost
 - Surface Mounted Heaters
 - \circ Heater Elements Inserted into Coil
- Uses External Heat Source for Defrost Heat
- Up to 80% of Heat Load can be transferred to Refrigerated Space

Electric Defrost Techniques

Time Intitiated

- Typically set for "worst case" and seldom adjusted
- $\circ~$ Can be Time or Temperature Terminated
- Runtime Defrost Schemes
- Adaptive Defrost Schemes
 - \circ Reactive
 - \circ Proactive

Proactive Defrost Constantly Monitors System Performance

Walk-In Freezer (Before)

7 day graph with defrost timeclock set to (4) 30 minute defrosts/day

Walk-In Freezer (After)

As Few As 3 Defrosts in 1 Week

Electric Defrost Heater Control

80% additional room heat gain (radiation + convection) due to high heater temperature

Consequences of Fogging

Advanced Defrost Heater Control

Only 20% additional heat gain (radiation + convection) due to heater temperature

Ensures lower coil temperature, less energy usage, decreased product heating

Results of Improved Defrost Control

Before - June 15, 2012

After - July 22, 2012

Defrost Termination

Defrost Termination On Time

- $\,\circ\,$ No gaurantee coil is defrosted
- Doesn't prevent addition of unnecessary heat into refrigerated space

• Defrost Termination on Temperature

Fixed Temperature Setting vs. Adjustable
Adjustable Defrost Termination Location vs. Fixed
More than 1 Defrost Termination Location?

Coil Temperature Reaching 80°F

Improved Defrost Termination

THANK YOU!

